
Taking The Skeletons Out Of The Closets:
A Simple And Efficient Topology Discovery

Scheme For Large Ethernet LANs
Yigal Bejerano

Bell Laboratories, Lucent Technologies

Abstract: Today, Ethernet is the dominant local area network
(LAN) technology. These networks, typically, comprise large
number of elements from different vendors. This raises con-
siderable difficulties in performing network management tasks,
such as resource management and root cause analysis, which
are practically impossible without an up-to-date knowledge of
the physical network topology. Given the dynamic nature of to-
day’s LANs, keeping track of topology information manually is
a daunting (if not impossible) task. Therefore, it is essential to
develop practical schemes for automatic inference of the phys-
ical topology of Ethernet networks. In this paper, we propose
a simple and efficient algorithmic solution for discovering the
physical topology of large, heterogeneous Ethernet LANs that
may include multiple subnets as well as uncooperative network
elements, like hubs. Our scheme utilizes only generic MIB in-
formation and does not required any hardware or software modi-
fication of the underlying network elements. By rigorous analy-
sis, we prove that our method correctly infers the network topol-
ogy and has low communication and computational overheads.
Our simulation results show that the scheme successfully infers
the complete topology in the vast majority of the cases, includ-
ing many instances in which other methods fail. Finally, we
implemented the proposed scheme to verify its inference capa-
bilities. These properties confirm the practicality of our scheme
for network management.
Keywords: Layer-2 Topology Discovery, Ethernet LANs, Sub-
nets, SNMP MIB, Switches, Hubs, Graph Theory.

I. INTRODUCTION

Modern Ethernet Local Area Networks (LANs) are typically
large networks that comprise hundreds or thousands of network
elements from different vendors. Their complexity and hetero-
geneity raise arduous management tasks to network administra-
tors. To this end, maintaining an accurate and complete knowl-
edge of the physical network topology is a prerequisite to many
critical network management tasks, including network diagnos-
tic, resource management, event correlation, root cause analysis
and server placement. This knowledge refers to the actual phys-
ical connections between the existing network elements. Due to
the frequent changes of the element connectivity, accurate topol-
ogy information, cannot be practically maintained without the
aid of automatic topology discovery tools. In spite of its crit-
ical role for network management, it is very difficult to obtain
this topology information. Consequently, the majority of com-
mercial network-management tools, such as HP’s OpenView
(www.openview.hp.com) and IBM’s Tivoli (www.tivoli.com),

are only capable of providing network layer connectivity (i.e.,
ISO layer-3 also called IP layer). They present only router-to-
router interconnections and router interface-to-subnet relation-
ships. Inferring the network layer topology is relatively easy,
since routers are aware of their immediate layer-3 neighbors
as well as attached subnets and they publish this information
through their SNMP Management Information Base (MIB) [1].
This information is sufficient to determine layer-3 topology, but
it fails to capture the complex interconnections of the Ethernet
LANs, that underlie the logical links of layer-3. Unfortunately,
layer-2 elements, e.g., “bridges” and “switches”, do not provide
similar information of their immediate layer-2 neighbors, which
complicate the discovery of the physical network topology.

A. The Challenges

In this study we address the difficult task of inferring the phys-
ical network topology of Ethernet LANs, by using only generic
layer-2 MIB information. Every algorithmic solution that re-
solves this challenge is required to address three fundamental
sources of complexity.
(i) Inherent Transparency of Layer-2 Hardware. Layer-2 net-
work elements, i.e., switches, bridges, and hubs, are completely
transparent to end-point hosts and layer-3 routers. Furthermore,
they do not keep records of their layer-2 neighbors. The only
state that layer-2 switches maintain is their Address Forwarding
Tables (AFTs) that are used to forward incoming packets to the
appropriate output port. Fortunately, most layer-2 elements (see
(ii) below) make this information available through a standard
SNMP MIB [1], [2].
(ii) Transparency of Dumb or Uncooperative Elements. Eth-
ernet LANs deploy heterogeneous layer-2 switching elements
with different capabilities. Some elements may not provide ac-
cess to their AFT information, while other may be “dumb” el-
ements, like hubs, even without MAC addresses. Since hubs
do not communicate with other elements, they are, essentially,
invisible to the other network elements and cannot be detected
directly. Clearly, inferring the physical connections of hubs and
“uncooperative” switches based on the limited AFT information
obtained from other elements poses a non-trivial algorithmic
challenge. An example of a LAN that contains a “dumb-hub”
is illustrated in Figure 1-(a)
(iii) Multi-Subnet Organization. Large Ethernet LANs typically
support multiple subnets that divide the network elements into
groups. Elements in the same subnet can communicate directly
with each other without involving a router, while communica-
tion between elements in different subnets must traverse through

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

1-4244-0222-0/06/$20.00 (c)2006 IEEE

a

v1

v2

v3

b

c d

e

(a) The network.

v4

j

k
l

m

(c) The connecting tree
of subnet N2.

Hub

v2

v3

v4

j

k
l

m

x
zv6

y

v1
x

zv6

y

v5 f

(b) The connecting
tree of subnet N1.

a

v1

v2

v3

b

c d

ev5 f

(d) The connecting tree
of subnet N3.

v4 Switch Hub a Hostszl

Fig. 1. An example of a network and its subnet connecting trees.

routers even if they are directly connected to each other. Con-
sequently, packets generated by elements of a given subnet tra-
verse mainly along paths of the subnet connecting tree, which
is spanned by the nodes that belong to the considered subnet.
As a result of subnets, an element can be completely invisible
to its direct physical neighbors. For instance, consider the LAN
pictured in Figure 1-(a). Its hosts are divided into three subnets,
N1 = {a, b, c, d, e, f}, N2 = {j, k, l,m} and N3 = {x, y, z},
and their corresponding connecting trees are presented in Fig-
ures 1 (b)-(d), respectively. In this example, node v1 is oblivious
to the hosts in subnet N2, while node v2 is unfamiliar with the
elements in subnet N1, although these two nodes are adjacent.

B. Related Work

The need for an up-to-date layer-2 topology informa-
tion has been recognized by both the telecommunication
industry and the research community. A few infrastruc-
ture providers have already deployed their own proprietary
protocols for discovering physical interconnections. Ex-
amples of such mechanisms include Cisco Discovery Pro-
tocol (www.cisco.com) and Extreme Discovery Protocol
(www.extremenetworks.com). These tools utilize pro-
prietary neighbor detection mechanisms which are not appli-
cable in a heterogeneous, multi-vendor environment. Other
topology discovery tools, such as Peregrine’s Infratools software
(www.peregrine.com) and Micromuse’s Netcool/Precision
application (www.micromuse.com), claim to provide layer-2
maps, but these tools are based on proprietary technologies
that their details have not been published. Acknowledging the
importance of maintaining accurate topology information, the
IETF rectified in 2000 a new “physical topology” MIB [2] that
records link layer interconnections. However, the proposal does
not specify any protocol for populating these MIB entries. Re-
cently, the IEEE 802.1ab committee finished its proposal for a
new layer-2 discovery protocol, called link layer discovery pro-

tocol (LLDP) [3]. LLDP enables neighboring elements to notify
each other of their presence and, consequently, to populate their
“physical topology” MIBs [2]. This solution provides adequate
information to infer the physical topology, however, LLDP can-
not be easily deployed on all the legacy equipment. Conse-
quently, it cannot easily be used at the huge installed base of
heterogeneous Ethernet LANs of today. These industrial efforts,
however, endorse the need for practical topology discovery tools
for heterogeneous Ethernet LANs.

The challenge of physical topology discovery has also been
addressed by the research community. Several studies [4], [5],
[6], [7] introduced network tomography methods for inferring
the network topology. These techniques use solely end-to-end
measurements of packet drop rates or delay variance to infer
the logical structure of an investigated network without collect-
ing MIB information. These studies claim to provide relatively
accurate logical graphs of the explored LANs. However, they
require the deployment of monitoring software at the end-users
and generating a large number of probe messages. Moreover,
they cannot provide the actual mapping of network elements to
logical nodes, which makes them less desirable for practical net-
work management.

The most relevant results to our work are the three prominent
studies in [8], [9] and [10] that rely solely on AFT informa-
tion to infer the topology of Ethernet LANs. The considered
topology discovery problem was first formulated by Breitbart et
al. in [8]. They showed that the network topology may not be
uniquely defined even if the switches have complete AFT infor-
mation, i.e., each switch has an AFT entry of the appropriate
output port of every possible packet that it may receive. In such
cases, of course, discovering the network topology is impossi-
ble. Then, they proposed an algorithmic solution for network
settings that contain only cooperative switches with complete
AFT information. For such cases, the study first presents nec-
essary conditions that must be satisfied by any two directly con-
nected elements (without any intermediate nodes), termed valid
union. Then, it utilizes a matching algorithm to infer the net-
work topology. Unfortunately, this approach suffers from two
main drawbacks. Complete AFT information requires packet
exchanges between every pair of elements in the same subnet,
which in practice is very hard to obtain, if not impossible. More-
over, Ethernet LANs, typically, contain dumb-hubs and uncoop-
erative switches that does not provide AFT information. Thus,
for instance, the valid union approach cannot infer the topology
of the LAN presented in Figure 1-(a).

In [9], Lowekamp et al. propose techniques for inferring node
connectivity giving incomplete AFT information and they also
address the presence of hubs. For their needs, they introduce the
concept of simple connection, where a simple connection be-
tween any two network elements u, v is defined if it is known
which port of u leads to element v and, vice versa, which port of
v points to node u. Then they presented several rules to identify
such simple connections and used them to construct a “divide
and conquer” method that discovers the network topology. This
method finds first a node that has simple connections to all the
other network elements and uses it as a root node. The other
elements are divided into subsets according to the ports of the
root-node to which they have simple connections. The algorithm

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

repeats this process recursively until it infers the network topol-
ogy. By implementation, the authors showed that the proposed
solution, usually, works well for instances with a single subnet.
Nevertheless, since this approach requires at least one node to
have a simple connections with all the other network elements,
it cannot easily be extended to the case of multiple subnets. As
an example, the scheme fails to discover the topology of the net-
work presented in Figure 1-(a) that contains only three subnets,
but without any element that is included in the connecting trees
of all three subnets. Moreover, the scheme does not perform
any preliminary AFT populating process. Thus, its available
AFT information depends on the user traffic and the AFT aging
process1, which impairs the scheme success probability.

Addressing the drawbacks of the previous methods, Bejer-
ano et al. , presented in [10] a novel algorithm that consid-
ers the full generality of the problem, i.e., it handles multiple
subnets as well as dumb or uncooperative elements. The pro-
posed method is based on an iterative path refinement process
that gradually infers the element order along the path between
every pair of elements. The study proved that this method has a
strong completeness property that ensures the discovery of the
physical topology, if it is uniquely defined by the AFTs. Al-
though this study presents an interesting scheme, its contribution
is mainly theoretical, because it is hard to implementation and it
has high computational complexity. In addition, this algorithm
also assumes complete AFT information for all the cooperative
switches, which is hard to achieve. These, limitations of the
above three methods raise the need for simple and practical new
topology discovery scheme that considers the entire complexity
of heterogeneous Ethernet LANs.

C. Our Contributions

We propose a novel topology discovery (TD) scheme for
large heterogeneous Ethernet LANs with multiple subnets and
dumb/uncooperative elements that uses only generic MIB infor-
mation. Unlike the solution in [10], that guarantees complete-
ness in the case of complete AFT information with the price
of high computational complexity, we introduce a simple, ef-
ficient and practical method that determines the physical net-
work topology with a very high probability, while using only
limited AFT information. Our scheme consists of two stages.
In the first stage, the scheme performs an AFT populating pro-
cess, in which a single station sends ping messages to all the
network elements. Then the scheme collects the AFT informa-
tion by using SNMP queries. This simple process is sufficient to
populate the switch AFTs with enough MAC addresses, which
enables us to calculate the complete AFT information. This is
a significant advantage over the methods described in [8] and
[10] that require hard-to-obtain complete AFT information or
the Lowekamp et al. method, [9], that relies on sporadic AFT
information. In the second stage, the scheme invokes a topology
discovery (TD) algorithm. The latter utilizes an auxiliary data
structure, termed a skeleton tree, to represent the topology infor-
mation detected so far. Initially, the TD algorithm uses skeleton
trees to characterize the connecting tree of each subnet. Then, by
performing a sequence of merge operations, it integrates pairs

1Switches remove AFT entries that haven’t been refreshed during a given time
period).

of skeleton trees until it obtains a single tree that represents the
network topology.

We evaluate the scheme characteristics from four different
aspects: correctness, complexity, completeness and practical-
ity. We formally prove that whenever the topology discovery
algorithm ends with a single skeleton tree then this tree repre-
sents the accurate physical topology of the considered network.
Moreover, in case of a single subnet LAN, the scheme accurately
infers the network topology. Through rigorous complexity anal-
ysis, we prove that the running time of the topology discovery
algorithm is O(n3), which is significantly lower than the other
solutions. Then, by extensive simulations we show that the pro-
posed scheme successfully infers the complete network topol-
ogy in the vast majority of the cases and for practical network
settings its success probability is tangent to 100%. This includes
many instances where the methods presented in [8] and [9] have
failed. We demonstrate the practicality of our solution by imple-
menting the scheme and inferring the topology of various Eth-
ernet LANs. Finally, we show that the proposed scheme can be
used to infer the topology of virtual LANs (VLAN), [14], where
each VLAN spans its own independent connecting tree.

II. THE NETWORK MODEL

In this study we consider a connected Ethernet LAN that
is comprised of a large number of network elements, such as
switches (also known as bridges), hosts and routers. Since the
considered LAN is connected, there is a path between every
pair of network elements that involves only layer-2 elements,
i.e., switches and hubs, that are including in the considered
LAN. The LAN may have an arbitrary topology, however, we
assume that the switches execute the spanning tree protocol [12]
to determine their active ports. As a result, the active forward-
ing paths between the elements yield a tree topology within the
explored LAN. We model this spanning tree as an undirected
tree, G(V,E), where node in V represents a network elements
and each edge in E represents a physical connection between
two active element ports. The spanning tree G(V,E) is the tar-
get of our topology discovery algorithm and it is termed the ex-
plored network or simply the network. In this tree, switches are
internal nodes while hosts and routers are represented as leaf
nodes. Since, the latter are practically indistinguishable for the
purposes of layer-2 topology discovery, we refer in the follow-
ing to routers as hosts2.

Packets are forwarded only along the links of the spanning
tree and their routes are determined based on the address for-
warding table (AFT) information obtained through backward
learning. In other words, the AFT information of a given active
port is comprised of the MAC addresses that have been seen as
source addresses on packets received by this port. Since G is
a tree, there is a single path in G between every pair of nodes
s, t ∈ V , denoted by Ps,t. For every node v ∈ V , we denote by
Dv its set of active ports. We use the notation (v, k) to identify
the kth port of node v ∈ V , and Fv,k to denote the set of AFT
entries at port (v, k). We also denote by v(u) the port of node v
that leads to node u in G, i.e., node u ∈ Fv,v(u).

2Recall, that from layer-2 perspective each router port that is connected to the
LAN is considered as a separate host. Thus, a single router may be represented,
in our model, by several hosts.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

The set V is comprised of both labeled and unlabeled nodes.
Labeled nodes, basically, represent elements that have a unique
identifying MAC address and can provide AFT information
through SNMP queries. Unlabeled nodes, on the other hand,
represent both “dumb” hub devices or switching elements with
no SNMP support. Thus, AFT information can be obtained only
from labeled nodes. To simplify the discussion, we refer to la-
beled and unlabeled switching elements simply as switches and
hubs, respectively and we consider all the hosts as labeled nodes.

Every labeled node in G is associated with one or more sub-
nets. A subnet is a maximal set of network elements N ⊆ V
such that any two elements in N can communicate directly with
each other without involving a router, while communication
across different subnets must go through a router. Thus, a packet
from node s to node t in the same subnet N traverses along the
path Ps,t in G. Let N be the collection of subnets of the graph
G, where each subnet N ∈ N is defined by the set of its mem-
bers. Typically, the subnet association of a node is determined
by its IP address and a corresponding network mask. For exam-
ple, IP address 145.112.47.10 along with mask 255.255.255.0
identifies a subnet of network elements with IP addresses of
the form 145.112.47.x, where x is any integer between 1 and
254. Thus, a packet sent between the hosts with IP addresses
145.112.47.10 and 145.112.47.200 traverses along the directed
path between these two hosts in the LAN. Though, a packet sent
between the hosts 145.112.47.10 and 145.112.40.10 must tra-
verse through a router.

We denote by N the set of labeled elements in a given sub-
net or the set of labeled elements of several subnets in N . Ev-
ery set N (with either members of a single subnet or elements
in several subnets) defines a connecting tree in G, denoted by
TN (V N , EN), which is a sub-tree of G spanned by the nodes
in N . Essentially, TN (V N , EN) is actually the tree obtained by
taking the union of all paths {Ps,t} between every pair of nodes
s, t ∈ N , where, V N and EN are the sets of nodes and edges in
any such Ps,t path, respectively. Recall that V N contains the set
N itself, i.e., N ⊆ V N . We assume that V N does not represent
hubs (unlabeled nodes).

Example 1: Figure 1-(a) depicts an example of network with
6 switches, one hub and 13 hosts. The hosts are divided into
three disjoint subnets; N1 = {a, b, c, d, e, f}, N2 = {j, k, l,m}
and N3 = {x, y, z}, where each switch is solely included in a
separate subnet. The connecting trees of N1, N2 and N3 are
presented in Figures 1 (b)-(d), respectively. �

Since a switch may serve hosts in different subnets, for every
switch v ∈ V we denote by Nv ⊆ N the collection of subnets
that v is included in their connecting trees. Essentially, the AFTs
of a given node v contain mainly reachability information for the
nodes in the subnets in Nv . We use the notation FN

v,k to denote
all the AFT entries for nodes in N ∈ Nv that are included in the
AFT Fv,k of v. We also denote by DN

v its set of active ports in
TN , i.e., k ∈ DN

v if FN
v,k �= ∅. We say that the AFT FN

v,k of v
is complete for subnet N if Fv,k contains the MAC addresses of
all nodes in N that are reachable by port (v, k). Similarly, the
AFT Fv,k of v is termed complete if it is completed for all the
subnets N ∈ Nv . In other words, the AFT Fv,k contains all the
MAC addresses of every node v ∈ N accessible by port (v, k)
for every subnet N ∈ Nv (v is included in its connecting tree).

Symbol Semantics
G(V, E) The explored network (spanning tree).
(v, k) kth port of node v ∈ V (v1, v2, ...)
Fv,k AFT entries at (v, k) (i.e., nodes reachable by (v, k))
Dv The set of active ports of node v.
v(u) The port of node v that leads to node u in G
N The set of subnets included in the network.
Nv The subnets that contain v in their connecting trees
Ps,t The set of nodes along the path from s to t in G.

T N (V N , EN) The connecting tree of the set (subnet) N .
N The set of nodes (subnets) that induce T N (V N , EN).
V N All the network elements in T N (the set N and the

other switching elements in T N).
EN All the links included in T N .
F N

v,k The AFT entries at (v, k) of the nodes in N .

DN
v The set of active ports of node v in the tree T N .

r The root of a connecting tree T N .
Bv The set of nodes in N that are included

in the subtree of T N rooted by v
nv The number assigned to node v ∈ V N .
X The anchor nodes of the tree T N .

H(Y, A) The skeleton-tree of the connecting tree T N .
Cy The nodes in V N represented by the vertex y ∈ Y .

TABLE I

NOTATION.

A summary of the paper main notation is given in Table I.
In this study, we assume, first, that all the AFTs are complete

and we relax this requirement in Section IV-C. Although, our
model does not explicitly consider virtual LANs (VLANs), as
defined by the IEEE 802.1-Q standard [14], we extend our solu-
tion to support VLANs in Section VIII.

III. OVERVIEW OF OUR SCHEME

The goal of our topology discovery (TD) scheme is discov-
ering the physical topology of the spanning tree, G(V,E), em-
bedded in the explored Ethernet LAN. The scheme relies only
on AFT information provided by labeled nodes in G for the fol-
lowing two purposes:
(1) Detecting the direct physical connections between active
ports of labeled elements.
(2) Identifying the existence of unlabeled nodes, i.e., hubs, in G
and their adjacent elements.
The TD algorithm consists of two phases. First, it determines
the topology of the connecting-tree TN of every subnet N ∈ N
by using only AFT information of the nodes in TN . Since, this
information may be insufficient for determining the complete
topology of TN , it deploys an auxiliary data structure, termed a
skeleton-tree. The later represents the connecting-tree topology
within a certain degree of accuracy. After calculating all the sub-
net skeleton-trees, the algorithm iteratively merges these trees
together. The merge operation enhances the topology knowl-
edge until a single tree, that represents the complete network
topology, is obtained.

A. The Skeleton-Tree Data Structure

We now define the skeleton-tree data structure. Consider a
connecting-tree TN (V N , EN) of subnet N ∈ N and let us as-
sume complete AFT information. We distinguish between two

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

(b) The skeleton tree
of subnet N1.

a

v3

b

v1
v2

(a) The connecting
tree of subnet N1.

a

v1

v2

v3

b

c d

ev5 f

c d

ev5 f

Fig. 2. The connecting trees of subnet N1 and its corresponding skeleton tree.

types of switches in TN ; The first are junction nodes with de-
gree 3 or more, while the second are transit nodes with degree
2 in TN . The latter can be divided into segments such that each
one identifies a successive path between two junction nodes or a
junction and a leaf node. For instance, consider the connecting
tree of subnet N1, depicted in Figure 2-(a). Here, v1 and v2 are
transit nodes, while nodes v3 and v5 are junctions.

Definition 1: The skeleton-tree of the connecting-tree TN ,
is a graph H(Y,A) with a tree topology such that each ver-
tex y ∈ Y represents a set of nodes Cy ⊆ V N (Cy may be
empty) and the set A of arcs represents the tree links. Each
node v ∈ V N is included in exactly one set Cy , y ∈ Y . Each
leaf or junction node in TN is exclusively represented by a sin-
gle vertex y ∈ Y and a segment of transit nodes is identified
by one or more vertices in Y . Moreover, the topology of TN is
obtained by replacing each vertex y ∈ Y by the corresponding
node or segment of nodes represented by the set Cy .

For the sake of clarity, we use different terminology to dis-
tinguish between the elements of a connecting tree TN and its
corresponding skeleton-tree H(Y,A). Given that a connecting
tree TN is part of the explored network, we use the terms nodes
and links to denote its network elements and their interconnec-
tions, respectively. We use the terms of vertices and arcs to de-
note the elements of the skeleton tree and their interconnections,
accordingly.

From a graph theoretic perspective, the graphs TN and
H(Y,A) are homeomorphic, [11]. In other words, the topol-
ogy of TN can be obtained from the graph H by subdividing
arcs until every transit node is solely represented by a vertex.
Similarly, the graph H can be obtained from TN by smoothing
away the corresponding transit nodes. Consequently, it is easy
to see that there is a unique mapping from each node v ∈ V N

to a single vertex y ∈ Y . However, a reverse mapping may not
be uniquely defined. If there is a unique mapping from a ver-
tex y ∈ Y to a single node (network element) in TN , then they
both are called anchors. Thus, the network topology is uniquely
defined when all the nodes are anchors.

Example 2: Consider the network depicted in Figure 1-(a).
The skeleton trees of the subnets N2 and N3 are given in Fig-
ures 1-(c) and 1-(d), respectively. These two skeleton-trees pro-
vide the complete topology of the trees TN2 and TN3 . Fig-
ures 2-(a) and 2-(b) present the connecting tree of subnet N1

and its corresponding skeleton-tree, respectively. In this exam-
ple, the segment {v1, v2} of transit nodes is represented by sin-
gle vertex at the skeleton tree, while each one of the junction
nodes v3 and v5 is represented by a unique vertex. Thus, v3 and
v5 are anchor nodes. In the following, we use this tree to illus-
trate an execution of the skeleton-tree creation algorithm. Since
our solution assume a tree root, Figure 2 presents directed trees
rooted at node a. �

B. Overview of the STC Algorithm

We now provide a brief description of the skeleton-tree cre-
ation (STC) algorithm, which is an essential building block of
our solution. Initially, the STC algorithm is used to calculate
the individual skeleton-tree for every subnet in N . Then, it is
used again by the merge operation to consolidate the individual
skeleton-trees of the subnets into a single tree that represents the
network topology. We provide a detailed description of the STC
algorithm in Section IV and we elaborate on the merge operation
is Section V-B.

Our algorithm is based on a very simple property of the con-
necting tree TN (V N , EN). Let us first select an arbitrary root-
node r ∈ N . Thus the connecting tree TN becomes a di-
rected tree rooted by node r. For each node v ∈ V N , let
Bv ⊆ N denote the set of nodes in N that are also included
in the subtree of TN rooted by v and let |Bv| denote its size.
For instance, Figure 2-(a) presents a directed connecting tree
rooted at node a. Since N1 = {a, b, c, d, e, f}, in this example
Bv1 = Bv2 = Bv3 = {b, c, d, e, f} while Bv2 = {c, d}. As we
describe below, the sets Bv , v ∈ V N , can be easily calculated
from the AFT information and they have the following property.

For every pair of nodes v, u ∈ V N such that u is a descendent
of v, it follows that Bv subsumes the set Bu, i.e., Bv ⊇ Bu.
Moreover, if v is a junction node or v ∈ N , then the set Bu is
an explicit subset of Bv , i.e., Bv ⊃ Bu.
We use this observation to compile a list L of the nodes in V N

sorted in non-increasing order according to their |Bv| values. In
the case of a tie, transit nodes appear before the junction nodes
that have the same |Bv| value. This list defines an order relation-
ship between the anchor nodes of the tree such that each junction
node and every node in N appears in L before each one of its
descendents nodes and after its ancestor anchor nodes. Thus,
at any valid permutation of L, the root r is always the first and
the leaves are at the end. This compelling property enables us
to conduct a top-down discovery of the corresponding skeleton
tree topology as we demonstrate in Example 3

Example 3: Consider the connecting tree TN1 rooted at node
a, as depicted in Figure 2-(a). At any valid permutation of L,
the root a is the first node and it is followed by nodes v1 and v2.
Since v3 is junction node, it appears after the two transit nodes
v1 and v2 and it is followed by node v5. Finally, the leaf-nodes
are at the end of the list. Thus, one feasible permutation of L is
L = {a, v2, v1, v3, v5, e, b, d, c, f}. The STC algorithm extracts
the nodes from L according to their order. First it removes the
root a and creates a skeleton-tree with a single vertex that repre-
sents a, as shown in Figure 3-(a). Then, it extracts node v2 and
creates a new vertex for it, as shown in Figure 3-(b). In the fol-
lowing, the algorithm removes v1 from L. Since v1 and v2 are
transit nodes, the AFT information does not specify their pre-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

(a) Initial stage.

frontier arc

a

v2

a

Ba={b,c,d,e,f}

a

v1
v2

a

v3

v1
v2

{b} {c,d,e,f}

a

v3

v1
v2

{b}

{e,f}

x

a

v3

v1
v2

{b}

x

{b,c,d,e,f}

e

(b) adding
node "v2".

(c) adding
node "v1".

(d) adding
node "v3".

(e) adding nodes
"v5" and "x".

{f}

(f) adding
node "e".

Ba={b,c,d,e,f}

{c} {d}

v5

{c} {d}

v5

Fig. 3. An example of an execution of the skeleton-tree creation algorithm.

cise order inside the tree TN1 . Therefore, v1 is assigned to the
same vertex of v2, as depicted in Figure 3-(c). In Figure 3-(d),
we show the skeleton-tree after adding node v3. In the sequel,
the algorithm extracts node v5. Then, by observing discrepan-
cies between the AFTs of node v3 and the set Bv5 , it concludes
the presence of an unlabeled node between v3 and v5 and adds a
hub between these two nodes, as shown in Figure 3-(e). Finally,
the algorithm adds the leaf-nodes as illustrated in Figure 3-(f).
The final skeleton-tree is presented in Figure 2-(b). �

IV. THE SKELETON TREE CREATION ALGORITHM

This section provides a detailed description of our skeleton-
tree creation (STC) algorithm. First, we present several basic
properties that cast the theoretical foundations of our algorithm.
Then we utilize them in our algorithmic description.

A. Basic Properties

Consider a set of nodes N (in one or more subnets) and let
TN (V N , EN) be the directed connecting tree spanned by the
set N with an arbitrary root node r ∈ N . Initially, we assume
that the AFTs of all the nodes v ∈ V N are complete for the set
N . We relax this requirement in Sub-section IV-C.

For each node v ∈ V N , we term its port v(r) that leads to
the root as root-port and we refer to all its other active ports,
DN

v − v(r), as leaf-ports. For every node v ∈ V N , we define
a set Bv ⊆ N that contains all the nodes of N included in the
subtree of TN rooted by node v. Let us denote the size of this
set by |Bv|. The set Bv can be easily calculated by taking all the
leaf-port AFT entries of nodes in N . Then, adding node v to Bv

if v ∈ N . Formally,

Bv =
⋃

k∈Dv−{v(r)}
FN

v,k ∪ ({v} ∩ N) (1)

The sets {Bv} have the following properties.
Property 1: For every node v ∈ V N , Bv �= ∅.

Proof: The tree TN is the connecting tree of the set N . Thus,
every leaf node of TN is included in N . Since every sub-tree
contains at least one leaf, every set Bv, v ∈ V N , contains at
least one node. �

Property 2: For every node v and any descendant u of node
v, Bv ⊇ Bu and |Bv| ≥ |Bu|.
Proof: The sub-tree rooted at node u is included in the sub-tree
rooted at node v. Thus, Bv ⊇ Bu. �

Property 3: For every node v ∈ N and any one of its descen-
dant u ∈ V N , Bv ⊃ Bu and |Bv| > |Bu|.
Proof: According to Property 2, Bv ⊇ Bu. Since, node v ∈ N
it is included in Bv but not in the sets Bu. �

Property 4: For every junction node v ∈ V N and any of its
descendant u ∈ V N , Bv ⊃ Bu and |Bv| > |Bu|.
Proof: Since v is a junction, it has at least k ≥ 2 children. From
Property 1 each sub-tree rooted by one of node v’s children con-
tains at least one node in N . Thus for every descendant u of
node v follows that Bv ⊃ Bu and |Bv| > |Bu|. �

These properties enable us to establish order relationships be-
tween the nodes. We assign a value nv to each node v ∈ V N as
defined by Equation 2.

nv =




|N | + 1/2 : If v = r
|Bv| − 1/2 : Else if v ∈ N or a junction

|Bv| : Otherwise.
(2)

Let L be a list of all nodes sorted in non-increasing order ac-
cording to their nv values. We say that node v has complete
order relationship if in any feasible permutation of L it appears
after all its ancestors and before all its descendants nodes in the
directed tree TN rooted by r.

Lemma 1: Every node in N and every junction node has
complete order relationship.
Proof: From Equation 2, the root r is the first node in the list L,
since its value nr = |N | + 1/2. Now, let v be a node in N or a
junction node. From Properties 3 and 4, it follows that |Bv| ≥
|Bu| + 1 for every descendant u of node v. Since nv = |Bv| −
1/2 and nu ≤ |Bu|, then nv > nu. By using similar arguments,
the Lemma is also satisfied for every ancestor of node v that is
included in N or it is a junction node. We only have to show that
the Lemma is valid for any transit ancestor u of node v. In this
case, nu = |Bu|. Thus, from Property 3, |Bu| ≥ |Bv|. Since,
nv = |Bv| − 1/2, the value of nu > nv . This completes the
proof. �

In the cases that all the nodes have complete order relation-
ship, the network topology is uniquely defined and can be cal-
culated by the STC algorithm. However, complete order rela-
tionship is not guaranteed to transit nodes that are not included
in N . Thus, a segment of transit nodes (not in N) is represented
by single skeleton-tree vertex. This raises the need to divide
transit nodes into successive segments. For this need, we use
the following property.

Lemma 2: Consider two transit nodes u, v ∈ V N − N such
that Bu = Bv , then every node x in the path between node u
and v is also a transit node with Bx = Bv .
Proof: Let us assume for the sake of contradiction that this
Lemma is not satisfied. Thus, there is a pair of transit nodes

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

u, v with Bv = Bu such that the path between them contains a
node x, which is either in N or a junction node. Let us assume
w.l.o.g. that node u is a descendant of node v. Thus, x is a
descendant of node v and an ancestor of node u. According to
Properties 2, Bv ⊆ Bx and Bx ⊆ Bu. Thus, Bx = Bv . More-
over, from Properties 3 and 4, node x cannot be neither in N or
a junction node. So it must be a transit node. �

Corollary 1: Consider a transit node v ∈ V N and let C ⊂
V N be the set of all transit nodes such that for every u ∈ C,
Bu = Bv. Then, all the nodes of C are included in a successive
segment of transit nodes in the tree TN .

Example 4: Consider the connecting tree TN1 of the subnet
N1 with root node a, (as shown in Figure 2-(a)). In this case, the
sets Bv1 = Bv2 = Bv3 = {b, c, d, e, f}. However, these nodes
have different nv values, i.e., nv1 = nv2 = 5 while nv3 = 4.5.
Consequently, the nodes v1 and v2 always appear before node
v3 at any feasible permutation of L, as argued in Example 3 �

B. The Algorithm

The skeleton-tree creation (STC) algorithm computes a
skeleton-tree H(Y,A) that retains the topology knowledge of
a given connecting tree TN (V N , EN). It is an iterative algo-
rithm that starts with an empty skeleton-tree H and adds at each
iteration a new labeled node v ∈ V N to H , until all the labeled
nodes in V N are represented in H . The algorithm receives as
input the sets N and V N , the root node r ∈ N , and AFT infor-
mation, i.e., FN

v,k for each v ∈ V N . For its needs, it maintains
a directed graph H(Y,A) that denotes the skeleton tree calcu-
lated so far. Every vertex y ∈ Y maintains a set Cy ⊂ V N

of the nodes that it represents and a parameter ny that denotes
the nv value of these nodes as defined by Equation 2. Recall
that in the case that vertex y denotes a segment of transit nodes,
then all the nodes v ∈ Cy have the same nv value. The arcs
represent the known links in the considered tree. During the cal-
culation, an arc may have only one known end-point, while its
other end-point node has not been discovered yet. Such arcs are
called frontier arcs and they are stored in a set, denoted by Z,
until both their end-points are detected. For every arc a ∈ A
the algorithm keeps a set Ba with all the nodes in N reachable
through this arc. The set Ba is actually the AFT, V N

v,k, of the
corresponding port k of a node v ∈ Cy . To clarify the details of
algorithm, we demonstrate again an execution of the STC algo-
rithm for calculating the skeleton tree given in Figure 2-(b).

During the initialization stage, the algorithm finds the root-
port, v(r), for each node v ∈ V N and calculates its set Bv and
its value nv , as defined by Equations 1 and 2. Then, it compiles
a list L of the nodes V N − {r} sorted in non-increasing order
according to their nv values. In addition, it initializes a skeleton
tree H(Y,A) with a single vertex y that represents the root r,
i.e., Cy = {r} and ny = |N | + 1/2. The algorithm also orig-
inates a set Z with |DN

r | frontier arcs that denotes the incident
links of the root-node r. Each arc a ∈ Z is associated with a
set Ba = FN

r,k for each one of the root’s active ports in TN ,
i.e., k ∈ DN

r . An example of the initialization stage is presented
in Figure 3-(a) and in Figure 3-(b) node v2 is added to H .

After the initialization stage, the algorithm iteratively extracts
the first node from L, denoted by v′, and modifies the skeleton-
tree H(Y,A), accordingly. First, it identifies the frontier arc

a ∈ Z that will be connected to the newly-discovered node v′.
Since a is the only frontier arc that represents a link along the
path Pr,v from the root r to node v′ in TN , Ba ⊇ Bv′ . We
use it to identify the corresponding arc a. In the following, let
us denote with y ∈ Y the known end-point (vertex) of a in H .

The algorithm distinguishes between two basic cases. If ny =
nv′ (and they are integer numbers) then from Lemmas 1 and 2
follows that node v′ is a transit node included in the segment
represented by vertex y. In such case, node v′ is added to Cy , as
described in Example 5.

Example 5: In our example, nodes v1 and v2 are transit nodes
with Bv1 = Bv2 = {b, c, d, e, f} and nv1 = nv2 = 5. Conse-
quently, they are represented by the same vertex y, as illustrated
in Figure 3-(c). �

When ny > nv′ then node v′ is represented by a new vertex
y′ in H . The vertex y′ is associated with a set Cy′ = {v′}
and a value ny′ = nv′ . For every leaf-port k ∈ DN

v′ − {v(r)}
of v′, the algorithm creates a new frontier arc a′ incident from
vertex y′, it associates the new arc a′ with the set Ba′ = FN

v′,k
and adds a′ to Z. Now, if Ba = Bv′ , there are no intermediate
nodes between the node represented by vertex y and node v′.
Thus, the algorithm connects arc a to the vertex y′ and removes
a from the frontier arc set Z, as described in Example 6

Example 6: Consider the addition of node v3 to the skelton-
tree, as shown in Figure 3-(d). Since, nv1 = nv2 = 5 while
nv3 = 4.5 (see Example 4), node v3 is represented by a separate
vertex y. However, Bv1 = Bv2 = Bv3 = {b, c, d, e, f}. Thus,
we conclude that v3 is directly connected to either node v1 or
node v2. �

Now, suppose that Ba ⊃ Bv′ . Consequently, we conclude
that the parent of v′ in TN is an unlabeled node and we con-
sider two situations. If, vertex y represents a labeled node,
i.e., Cy �= ∅, then a new vertex x is created and inserted be-
tween the vertices y and y′. Since, x represents unlabeled node
it is associated with a set Cx = ∅ and a value nx = |Ba| − 1/2
(according to Equation 2). Vertex x is attached to two new arcs
a1, a2 with Ba1 = Bv and Ba2 = Ba −Bv . The algorithm con-
nects vertex x to the arc a that incidents vertex y and attaches
vertex y′ to the arc a1 of x. The arc a is removed from Z and
the arc a2 is inserted. An illustration of such situation is given
in Example 7.

Example 7: Consider the skeleton tree presented in Figure 3-
(d) and let v5 be the newly discovered node represented by ver-
tex y′. Note that vertex y represents node v3 and its is associated
with two frontier arcs. Since Bv5 = {c, d}, node v5 should be
connected to the frontier arc a with Ba = {c, d, e, f}. Since,
Ba = {c, d, e, f} ⊃ {c, d} = Bv5 , The algorithm detected the
hub between nodes v3 and v5. It adds a new vertex x that de-
notes the hub and connects x to the vertices y (represents v3)
and y′ (denotes v5). Thus, vertex x has one frontier arc a2 with
Ba2 = {e, f}. The computed tree is shown in Figure 3-(e). �

The second situation occurs when Ba ⊃ Bv and vertex y
represents hub (unlabeled node), i.e., Cy = ∅. In this case, the
hub is the direct parent of node v as well as some other nodes
in TN that have not been discovered yet. Consequently, the
algorithm creates a new frontier arc â for y, which denotes the
hub ports that lead to its undetected children. Thus, Bâ = Ba −
Bv and â is added to Z. In addition, it connects vertex y′ to the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

arc a (with Ba = Bv) and removes a from Z. Such a case is
presented in Example 8.

Example 8: Consider the skeleton tree presented in Figure 3-
(e) and let us assume that the algorithm has just extracted node
e from the list L. Since vertex x has a frontier arc a with
Ba = {e, f}, it follows that node e should be reachable through
this arc. However, in this case Ba contains also node f . Thus,
there is either another hub between node e and the hub repre-
sented by x, or x has another port that leads to f . In practice,
we cannot distinguish between these two scenarios and we as-
sume the presence of a single hub. Thus, the algorithm connects
node e directly to vertex x and adds a new frontier arc â with
Bâ = {f}, as depicted in Figure 3-(f). �

From Example 8 follows that two or more adjacent hubs in the
actual network are represented by a single hub in our inferred
solution.

At the end of the iteration, the algorithm extracts the next
node v′ from L, until L is empty. In our description we omit
port-id information but this can easily incorporate to our algo-
rithm. A formal description of the algorithm is given in Figure 4.

Theorem 1: Consider a set N ⊆ V , its corresponding
connecting-tree TN (V N , EN) and any given root node r ∈ N .
Then, the STC algorithm computes a skeleton-tree H(Y,A) of
TN , where every node v ∈ N and every junction node in TN is
represented by anchor vertices in Y .
Proof: The nodes in L are added to the skeleton-tree H(Y,A)
according to their order in L. From Lemma 1, every node v ∈ N
or a junction node in TN is inserted to H after its ancestors and
before its descendants in TN . Node v is attached to the arc
a ∈ Z such that Ba ⊇ Bv therefore its is placed in its correct
position in the tree. Note that the algorithm inserts unlabeled
nodes when Ba �= Bv . By using Lemma 2, the algorithm groups
together transit nodes with the same Bv sets and represents them
with a single vertex in Y . Thus, the graph H(Y,A) is a valid
skeleton tree of TN . �

C. Relaxing The Complete AFTs Requirement

We now replace the hard-to-obtain complete AFT require-
ment with much simpler requirement that can be easily obtained.
As defined in Section III, the set Bv of every node v ∈ V N con-
tains only AFT entries of its leaf-ports. Thus, only the leaf-ports
must be completed for the set N , while the root-port AFTs need
to include only the address of the root-node. The later is used
just for identifying the root-ports of the nodes. This requirement
is formulated as follows,

Requirement 1: Consider the connecting tree TN (V N , EN)
of a given set N with a root node r. For every node v ∈ V N ,
the AFT of the root-port, v(r) must include the address of the
root-node r and the AFTs of all the leaf-ports, DN

v − {v(r)},
must be complete for the set N .
Requirement 1 can be easily achieved by sending probe mes-
sages from a single point, as we show in Section V-A.

D. Calculating Extended AFTs

We argued in Section IV-C that a skeleton tree can be calcu-
lated without complete AFTs. More specific, for a given root
node, it is sufficient if every root-port AFT contains the root-
node address and only leaf-port AFTs are complete. Such AFT

procedure SKELETONTREE(N, V N , r, AFTs)
Initialization:
1. for every node v ∈ V N − {r} do
2. Bv =

⋃
k∈Dv−{v(r)} F N

v,k

⋃
({v}

⋂
N)

3. if v ∈ N or |DN
v | �= 2 then nv = |Bv | − 1/2

4. else nv = |Bv |
5. end for
6. L = Sorted list of V N − {r} in non-increasing

order according to their nv values.
7. Create a new vertex y, with Cy = {r}
8. ny = |N | + 1/2.
9. for every port k ∈ DN

r do
10. Create an outgoing arc a for y, Ba = F N

r,k .
11. Z = Z

⋃
{a}

12. end for

Main Loop:
13. while L �= ∅ do
14. v′ = get and remove the first node in L.
15. Find arc a ∈ Z s.t. Ba ⊇ Bv′ .
16. y = the starting-point of a in Y .
17. if ny = nv′ then
18. Cy = Cy

⋃
{v′}

19. else
20. Z = Z − {a}
21. Create a new node y′ with Cy′ = {v′}.
22. ny′ = nv′
23. for every port k ∈ DN

v − {v(r)} do
24. Create an outgoing arc a′ for y′.
25. Ba′ = Bv′,k
26. Z = Z

⋃
{a′}

27. end for
28. if Ba = Bv′ then
29. Connect node y′ to arc a.
30. else if Cy = ∅ then
31. Create an outgoing arc â for y.
32. Bâ = Ba − Bv′ .
33. Z = Z

⋃
{â}

34. Connect node y′ to arc a.
35. Ba = Bv′
36. else
37. Create node x with Cx = ∅.
38. nx = |Ba| − 1/2
39. Create two outgoing arcs a1, a2 from x,

with Ba1 = Bv′ and Ba2 = Ba − Bv′
40. Z = Z

⋃
{a2}

41. Connect node x to arc a.
42. Connect node y′ to arc a1.
43. end if
44. end if
45. end while
46. return H(Y, A)

Fig. 4. A formal description of the STC Algorithm.

information that satisfies Requirement 1 can be easily obtained
for the case of a single subnet, as described in Section V. How-
ever, the required AFT information may not be available for us-
ing the STC algorithm to merge two skeleton-trees. To over-
come this deficit, we present an auxiliary algorithm, refer to as
the ExtendedAFTs routine, that augment the AFT informa-
tion collected from the network elements with additional entries
that are required for merge operations. We refer to this addi-
tional information as extended AFTs.

Consider a skeleton-tree TN (V N , EN) and let X ⊆ V N be
the set of anchor nodes in the tree TN . The AFT augmenta-
tion ensures that the AFTs of the nodes in TN are complete for
the set X . Our algorithm is based on the observation that TN

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

procedure EXTENDEDAFTS(y, X, H(Y, A))
1. for every child yj , j ∈ [1..J] of y do
2. Xyj = EXTENDEDAFTS(yj , X, H(Y, A))
3. end for
4. Xy = (

⋃J

j=1
Xyj)

⋃
(X

⋂
Cy)

5. for every node v ∈ Cy do
6. Fv,v(r) = Fv,v(r)

⋃
(X − Xy)

7. for every port v, kj , j ∈ [1..J] do
8. Fv,kj

= Fv,kj

⋃
Xyj

9. end for
10. end for

Fig. 5. A formal description of the EXTENDEDAFTSroutine.

uniquely specifies the location of every anchor node x ∈ X .
In other words, for every anchor node x ∈ X and every node
v ∈ V N , the skeleton-tree TN uniquely define the port v(x) of
v that leads to node x. The extended AFTs are calculated in a
recursive manner by performing a post-order tour [11] on the
skeleton-tree, starting with the root r. In this tour, it calculates
the set of anchor nodes Xy of every subtree of H rooted by a
vertex y ∈ Y . Then, it uses these sets to augment the nodes’
AFTs.

We now elaborate on the ExtendedAFTs routine. Con-
sider a vertex y ∈ Y and let us denote its children in H by
y1, y2, · · · , yJ ∈ Y . During the post order tour, each child yj re-
turns to its parent y the set of anchor nodes Xyj

that are included
in its subtree. Clearly, if y is a leaf vertex in H(Y,A) then the
algorithm does not perform recursive calls. After obtaining all
the sets {Xyj

} from each child yj of y, the routine calculates
the set Xy of anchor nodes in the subtree of vertex y. To this
end, it takes the union of all the sets Xyj

and if y is an anchor
vertex, then it also adds the node represented by y (the set Cy),
i.e., Xy = (

⋃J
j=1 Xyj

)
⋃

(X
⋂

Cy). Now, the routine extends
the AFTs of the nodes represented by vertex y, i.e., the nodes in
Cy . For every leaf-port k of every node v ∈ Cy , it matches the
corresponding child yj and adding the set Xyj

to its AFT. Then,
the root port v(r) of every node v ∈ Cy is augmented with the
set X − Xy . A formal description of the routine is given in
Figure 5.

Theorem 2: Consider a connecting tree TN (V N , EN) and its
corresponding skeleton tree H(Y,A). Let X be the set of an-
chors in both trees. Then the EXTENDEDAFTS routine calcu-
lates the complete AFTs for the set X for every node v ∈ V N .

Proof: This theorem results directly from the post-order tour that
the algorithm performs over the skeleton-tree. �

V. THE TOPOLOGY DISCOVERY SCHEME

We now elaborate on our topology discovery (TD) scheme.
The scheme is typically deployed on a network management sta-
tion (NMS) for discovering the topology of given LANs. Let us
denote by N the set of subnets that comprise the explored LAN
and let TNi(V Ni , ENi) be the connecting tree of every subnet
Ni ∈ N . The TD scheme, initially, collects the required AFT
information and then it executes a topology discovery (TD) al-
gorithm. Below, we elaborate on these two phases and a formal
description of the TD scheme is given in Figure 6.

procedure TOPLOGYDISCOVERY(V,N)

Obtaining the required information:
1. Send a ping message to each node v ∈ V .
2. Collect the AFT information from each node v ∈ V .
3. for every subnet Ni ∈ N do
4. Identify its root node ri ∈ Ni.
5. Identify the set of nodes V Ni of its connecting tree.
6. end for

Inferring the network topology:
7. for every subnet Ni ∈ N do
8. Hi(Yi, Ai) = SKELETONTREE(Ni, V

Ni , ri, AFTs)
9. Xi = The set of anchor of Hi

10. Let yi be the vertex of Hi that represents ri.
11. EXTENDEDAFTS(yi, Xi, Hi(Yi, Ai))
12. end for

13. while (there are two skeleton trees
Hi and Hj with Xi

⋂
Xj �= ∅) do

14. Nk = Ni

⋃
Nj

15. rk = Any node in Xi

⋂
Xj .

16. V Nk = V Ni
⋃

V Nj

17. Hk(Yk, Ak) = SKELETONTREE(Nk, V Nk , rk, AFTs)
18. Let yk be the vertex of Hk that represents rk .
19. EXTENDEDAFTS(yk, Xk, Hk(Yk, Ak))
20. Remove Hi and Hj

21. end while
22. return Hk(Yk, Ak) (or all calculated skeleton trees)

Fig. 6. A formal description of the TD scheme.

A. Collecting The Required information

For calculating the LAN topology our scheme is required to
gather the following information for every subnet Ni ∈ N :
(1) The set of nodes Ni included in the considered subnet.
(2) The set V N

i of nodes included in the corresponding
connecting-tree TNi .
(3) A root node ri.
(4) AFTs that satisfy Requirement 1.
Input - The scheme receives as input the network-ids and the
network-masks of all the subnets in N . Then, by using appro-
priate SNMP quires, it obtains the required AFT information.
Collecting the nodes’ MAC and IP addresses - The NMS
sends ping messages to all the possible IP addresses defined
by network-id domains. Each ping-reply message identify
a network element and its IP and MAC addresses. By sending
appropriate SNMP queries to each detected element, the NMS
infers the element type and if it has additional addresses (e.g.
switches or routers). This enables us to map MAC addresses
and IP addresses to a specific network element (regardless the
number of ports and addresses that it has). Thus, in the follow-
ing we assume that each node has a single identification number
that can be obtained from its IP or MAC addresses.
Selecting root-nodes - For every subnet Ni, the scheme selects
a root node ri. We considered two cases. If the NMS is included
in the subnet Ni, then the NMS itself serves as the root node ri.
Otherwise, NMS uses the designated router of subnet Ni as the
root node. The later is used by the nodes in Ni for their inter-
subnet communication. Thus, every message, sent by the NMS
to any node v ∈ Ni, traverses through the designated router and
a reply is forwarded on the reverse path. The designated router
can be easily found, e.g., by utilizing traceroute, [13].

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Populating the AFTs - As mentioned in Section II, the AFT
entries of the switches are seeded through backward learning on
active ports. In other words, the AFT information of a given
port is comprised of the MAC addresses that have been seen as
source addresses on packets received by this port. We exploit the
backward learning property in our AFT populating process. Lets
assume that the NMS sends a ping message to a node v ∈ Ni.
This message passes through the root node ri of subnet Ni and
traverses along the single path Pri,v , between ri and v. Then, a
reply is forwarded along the reverse path. These two messages
populates the AFTs along this path with the MAC addresses of
ri and v, accordingly. Consequently, by sending ping mes-
sages to every node v ∈ Ni from the NMS, the scheme popu-
lates the leaf-ports of all the nodes in TNi with complete AFT
information for the set Ni. Moreover, each root-port is seeded
with the address of the root node ri. This ensures that the AFTs
of the connecting tree TNi satisfy Requirement 1 for subnet Ni.
Collecting the AFT information - The scheme collects the
AFTs by using standard SNMP queries and infers the set V Ni of
the nodes included in TNi . This set contains all the nodes in Ni

and all the switching elements in the connecting tree TNi . Re-
call that every such switch has at least two active ports in TNi .
Thus, it can be identified by discovering two of its ports that
have AFT entries for nodes in Ni.

Theorem 3: Consider a subnet Ni, its connecting tree
TNi(V Ni , ENi) and its root node ri ∈ Ni (as determined
above). Then, the AFT populating process ensures that the
AFTs of every node v ∈ V Ni satisfy Requirement 1.

B. The Topology Discovery Algorithm

The topology discovery (TD) algorithm comprises of two
stages. In the first stage, it calculates a skeleton tree for each
subnet Ni ∈ N by invoking the STC algorithm (presented in
Section IV-B) with the following parameters:
(1) The nodes of the considered subnet, Ni.
(2) The root, ri, of the connecting tree as determined in Sec-
tion V-A.
(3) The set V Ni of the connecting tree nodes.
(4) The collected AFT information.
After calculating the skeleton tree, the algorithm uses the EX-
TENDEDAFTS routine to augment the AFTs with the anchor set
Xi of every connecting tree TNi .

In the second stage, the TD scheme uses the STC algorithm
again to merge pairs of skeleton-trees, until a single skeleton-
tree is obtained or the skeleton-trees cannot be merged any more.
Let Hi(Yi, Ai) and Hj(Yj , Aj) denote the skeleton-trees of two
different node sets Ni and Nj , where each not set, Ni or Nj ,
may contain members of a single subnet or several subnets. Let
Xi and Xj be their anchor sets, respectively. The TD algorithm
can merge these skeleton-trees if they have a common anchor
node, which is a node r ∈ Xi

⋂
Xj . After detecting two skele-

ton trees with a common anchor, the TD algorithm merges them
by calling to the STC algorithm with the appropriate parame-
ters:
(1) The node set N = Ni

⋃
Nj .

(2) The common anchor node r ∈ Xi

⋂
Xj as a root node.

(3) The set of nodes V N = V N1
⋃

V N2 that comprises all the
node of the connecting tree TN .

(4) The augmented AFT information.
As we prove below, the provided AFTs satisfy Requirement 1

for the set N and the root r. The resulting skeleton tree repre-
sents the connecting tree spanned by the set N = Ni

⋃
Nj . Af-

ter the merge operation, the TD algorithm augments the AFTs
with the anchor set of the new tree and seeks for another pair of
skeleton trees with common anchors.

The TD algorithm fails only when it cannot find any more
pairs of skeleton trees with a common anchor node. As shown
in Section VII, the probability of such event is very low.

Example 9: Consider the three skeleton trees spanned by the
subnets N1, N2 and N3 (see Figures 2-(b), 1-(c) and 1-(d)
above). The skeleton trees of subnets N1 and N2 can be merged
by using node v3 as a common anchor. In the resulting skeleton-
tree, nodes v1 and v2 become both anchor nodes. Then, the new
skeleton tree TN1

⋃
N2 is merged with the skeleton tree of sub-

net N3 where node v1 is used as a common anchor. This merge
yields the complete network topology. �

VI. THE ALGORITHM ANALYSIS

We now prove the correctness of the TD algorithm and to
calculate its complexity. Due to space limitation, we provide
only the main properties and the omitted proofs can be found
in [15]. Our correctness analysis relies on the correctness of
the STC algorithm and the AFT populating process proven in
Theorems 1 and 3. First, we consider the skeleton-trees of the
subnets.

Theorem 4: The TD algorithm calculates a feasible skeleton
tree for every subnet Ni ∈ N .

We now show the correctness of the merge operation. Con-
sider two skeleton trees Hi(Yi, Ai) and Hj(Yj , Aj) that repre-
sent the connecting trees of the sets Ni and Nj . Lets assume that
their anchor sets Xi and Xj contain a common anchor, denoted
by r. Moreover, let N = Ni

⋃
Nj and let V N = V Ni

⋃
V Nj ,

as calculated by the algorithm. We now prove that the AFTs of
the nodes V N satisfy Requirements 1 for the set N ∪ {r}.

Lemma 3: Consider a node v ∈ V Ni − V Nj . Then port v(r)
leads to all the nodes of V Nj .

Lemma 4: The AFTs of the nodes V N satisfy Requirement 1.
From Theorem 1 and Lemmas 3 and 4 follows,

Theorem 5: Consider two skeleton-trees with a common an-
chor node that represent the connecting-trees TNi and TNj .
Then, the outcome of their merge operation is a valid skeleton-
tree that represents the connecting tree spanned by the set N =
Ni ∪ Nj .
From Theorems 4 and 5 we conclude Theorem 6

Theorem 6: If the topology discovery (TD) scheme ends with
a single skeleton tree, then its result is a valid skeleton tree of
the explored network.
From Theorem 6 follows,

Corollary 2: If the TD algorithm ends with a single skeleton-
tree and the degree of each switch is at least 3, then this skeleton
tree contains only anchor nodes and it represents the actual net-
work topology.

Corollary 3: If the explored network comprises a single sub-
net and the degree of each switch is at least 3, then the TD
scheme can infer the network topology.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

We now present the algorithm complexity. We compute first
the running time of the STC algorithm and EXTENDEDAFTS

routine.
Lemma 5: the running time of the STC algorithm is O(|V |2).
Lemma 6: The running time of the EXTENDEDAFTS routine

is O(|V |2).
From Lemmas 5 and 6 follws,

Theorem 7: The running time of the topology discovery al-
gorithm is O(|V |3).

VII. SIMULATION RESULTS

We now address the completeness aspect of the TD scheme.
As shown in [8], the AFT information does not always define a
unique network topology, even if the AFTs are complete. Con-
sequently, our scheme provides a complete solution only if (i)
the AFTs define a unique network topology and (ii) the TD al-
gorithm can merge all the subnet skeleton trees into a single one.
However, by extensive simulations, we validate that our scheme
infers the complete network topology in the vast majority of the
cases included many cases that other schemes fail.

A. The Simulation Settings

We generated a large number of random networks with dif-
ferent numbers of switches, hosts, hubs and subnets. In order
to imitate practical network topologies, each simulated instance
has a hierarchical tree structure and it was constructed as fol-
lows; Initially, we generated a random tree of switches that de-
fines the switches’ connectivity. Then, we randomly connect the
required number of hubs to free switch ports and we uniformly
attached hosts to the switches and the hubs of the constructed
tree. In the following, we arbitrarily associated each host with
a single subnet-id and we connected the constructed tree to a
router with a dedicated port for each subnet.

After determining the instance topology, we populated the
AFTs by emulating transmissions of ping messages from the
router to each one of the hosts. We assumed that each mes-
sage traversed through the unique path between the correspond-
ing router-port and the selected host and the reply message was
forwarded along the opposite direction. Then, we collected
the AFT information and used our scheme to infer the network
topology. Finally, we checked if the result is a single skeleton-
tree that represents the complete network topology.

We considered two types of switches, one with 8 ports and
the second with 24 ports. In each instance, we either used 8-
port switches or 24-ports switches but not both. We also as-
sumed that the dumb-hubs contain only 8 ports. In addition, we
distinguished between cooperative and uncooperative switches.
While, the first provide their AFT information to the TD scheme,
the later do not response to SNMP quires. Consequently, one of
the main goals of our simulations is to evaluate the ability of the
TD scheme to infer the network topology, with different num-
bers of uncooperative switches and subnets in the network.

B. Simulation Results of Our Scheme

Our simulations evaluate the failure probability (in percent-
ages) of the proposed TD scheme to infer the complete topol-
ogy of the simulated networks. We considered as failure all the

0

0.5

1

1.5

2

0 1 2 3 4 5
Number of Uncooperative Switches

%
F

ai
lu

re
 P

ro
b

ab
ili

ty

3 subnets

4 subnets

5 subnets

6 subnets

7 subnets

Fig. 7. Simulation results of networks with 10 switches (with 8 ports), 10 dumb-
hubs (with 8 ports) and 100 hosts.

instances where the TD scheme could not infer a single skele-
ton tree of the simulated network, either where the AFTs don’t
define unique topology or when the TD scheme could not find
a common anchor node. We provide typical results of our sim-
ulations in Figures 7-10, where each chart considers network
instances with given numbers of switches, hubs and hosts. Each
chart represents the scheme failure probability as the number of
subnets and uncooperative switches increase. Each point results
from topology discovery attempts of 2000 random instances
with the same characteristics (number of switches, hubs, hosts,
subnets and uncooperative switches). For the sake of clarity, we
add lines between the points to show the trends that result from
changing the fraction of uncooperative switches in the simulated
networks, when the number of subnets is fixed.

Figures 7-8 consider networks that are comprised only of 8-
port switches and 8-port hubs. Each instance contains the same
number of switches and hubs, but the number of host is 10 times
the number of switches. Thus, on average 5 hosts are associ-
ated with each switch and hub. Similarly, Figures 9-10 consider
networks that are comprised only of 24-port switches and 8-port
hubs. Also here, each instance contains the same number of
switches and hubs, however, the number of hosts is 20 times
more than the number of switches. In these instances the av-
erage number of hosts that are attached to a switch is 15, while
only 5 hosts are attached on average to a hub. In our simulations,
we considered the affect of different subnet sizes (starting with
few large subnets and ending with an average number of 15 hosts
per subnet) and different number of uncooperative switches.

Our simulations indicate that the TD scheme always found the
topology when the explored networks had small number of un-
cooperative switches, i.e., tangent to 100% success probability.
This is itself an impressive result, since in all of the evaluated in-
stances half of the switching elements were dumb-hubs that do
not provide AFT information. Moreover, the simulations also
reveal that the success probability was always above 99.75%
when the average number of hosts in a subnet was 20 or more.
This high success probability remained also when the number
of uncooperative switches was 50%. Recall that in these cases,
75% of the network switching elements are uncooperative and
only 25% of the switching elements provide AFT information.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Uncooperative Switches

%
F

ai
lu

re
 P

ro
b

ab
ili

ty

6 subnets

12 subnets

18 subnets

24 subnets

30 subnets

36 subnets

Fig. 8. Simulation results of networks with 50 switches (with 8 ports), 50 dumb-
hubs (with 8 ports) and 500 hosts.

0

0.5

1

1.5

2

0 1 2 3 4 5
Number of Uncooperative Switches

%
F

ai
lu

re
 P

ro
b

ab
ili

ty

4 subnets

6 subnets

8 subnets

10 subnets

12 subnets

14 subnets

Fig. 9. Simulation results of networks with 10 switches (each one with 24
ports), 10 dumb-hubs (each one with 8 ports) and 200 hosts.

The simulations show that also in extreme cases, where the aver-
age subnet size is 15 hosts or less and only 25% of the switching
elements (switches and dumb-hubs) are cooperative, the success
probability of the TD scheme is above 95%. These remarkable
results indicate that even with very limited AFT information the
success probability of the proposed TD scheme is still very high.

C. Comparison with other Schemes

We also compared our scheme with other AFT-based TD
schemes. In this comparison, we considered only the methods
in [8], [9] that were implemented and are known as “practical”.
We first considered the Breitbart et al. scheme presented in [8].
This scheme can infer the network topology only when it has
the complete AFT information from all the switching elements,
i.e., no hubs in the network. Thus, it cannot infer the topology of
the simulated networks where half of the switching elements are
hubs. In the journal version, the authors extended their scheme
to detect hubs in the case of a single subnet, if they are located
between a single switch and several hosts. This limited solution
cannot address uncooperative switches. So, it cannot find the
topology of the vast majority of the simulated instances.

We also simulated the scheme of Lowekamp et al. , [9], de-
noted by LHG. This scheme initially identifies simple connec-
tions between the network elements. Here, a simple connection

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of Uncooperative Switches

%
F

ai
lu

re
 P

ro
b

ab
ili

ty

16 subnets

24subnets

32 subnets

40 subnets

48 subnets

56 subnets

64 subnets

Fig. 10. Simulation results of networks with 50 switches (each one with 24
ports), 50 dumb-hubs (each one with 8 ports) and 1000 hosts.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Uncooperative Switches

%
F

ai
lu

re
 P

ro
b

ab
ili

ty

LHG 6 subnets

LHG 12 subnets

LHG 18 subnets

LHG 24 subnets

LHG 30 subnets

LHG 36 subnets

STC 36 subnets

Fig. 11. Simulation results of the LHG shceme for networks with 50 switches
(each one with 8 ports), 50 dumb-hubs and 500 hosts.

between a pair of elements u, v is defined if the port of u that
leads to element v and the port of v that points to node u are
known. Then, the scheme checks if there is any “root-node” that
has simple connections with all the other elements. Finally, The
scheme utilizes a “divide and conquer” algorithm. The later uses
the simple connections of the root-node to divide the network el-
ements into subsets and recursively infers the network topology.
Consequently, the LHG scheme succeeds in discovering the net-
work topology only when such a root-node is detected.

For a fair comparison, we evaluated the success probability of
the LHG scheme for the same simulation instances that we used
to evaluate our own scheme (see Section VII-A above). The
LHG scheme does not perform any preliminary AFT populating
process and it relies on sporadic information when reading the
AFTs. However, in our simulations we seeded the AFTs with
complete information by emulating transmissions of pingmes-
sages between every pair of nodes in the same subnet. Clearly,
using complete AFTs increases the success probability of the
LHG scheme. Thus, our simulation results can be viewed as
upper bounds of the LHG scheme success probability.

Typical simulation results of the LHG scheme are presented
in Figures 11 and 12, for networks with 50 switches and 50 hubs.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of Uncooperative Switches

%
F

ai
lu

re
 P

ro
b

ab
ili

ty

LHG 16 subnets

LHG 24subnets

LHG 32 subnets

LHG 40 subnets

LHG 48 subnets

LHG 56 subnets

LHG 64 subnets

STC 64 subnets

Fig. 12. Simulation results of the LHG scheme for networks with 50 switches
(each one with 24 ports), 50 dumb-hubs and 1000 hosts.

In Figure 11 the simulated instances are comprised of 8-ports
switches and 500 hosts, while in Figure 12 the networks con-
tain 24-ports switches and 1000 hosts. The two charts show
that, in general, the LHG scheme has high success probability
in the cases of few subnets with large number of hosts. How-
ever, the success probability rapidly drops when the number of
subnets increases and the average subnet size decreases. For
instance, the scheme has only success probability of 80% for in-
stances with average subnet size of 15 hosts when only coopera-
tive switches are used (when simulating both 8-port and 24-port
switches). The success probability significantly declines when
the number of uncooperative switches increases. For compar-
ison, we add to each one of Figures 11 and 12, a graph that
indicates the success probability of our scheme, denoted with
“STC”, with average subnet size of 15 hosts. Thus, the two fig-
ures clearly demonstrate the superiority of our TD scheme over
the LHG method.

VIII. IMPLEMENTATION AND VLAN TOPOLOGY

DISCOVERY

Finally, we implemented the TD scheme to demonstrate its
practicality and we were able to discover the network topology
of the Computer Science Dept. of Bell-Labs in Murray Hill.
Due to space limitation, we omit the implementation details and
they can be found in [15]. We now present few useful obser-
vations for topology inference of Ethernet networks with virtual
LANs (VLANs), [14], that we have learnt from our experiments
with the TD scheme.

A typical skeleton-tree of a subnet - We investigated the
structure of the skeleton-tree of each individual subnet in our
LAN. We found that, in general, such skeleton-tree spans only a
branch of the LAN spanning tree with only few switches. But,
due to the switches high degree, they usually serve as anchor
nodes of the corresponding skeleton tree. In other words, the
skeleton trees typically provide the complete topology of the
subnet connecting trees. Accordingly, in many cases the net-
work topology can be obtained by taking the union of all the
detected links.

Virtual Local Area Networks (VLANs) - Conceptually,
VLANs provide similar functionality as subnets. They partition

the hosts into separate groups, such that a message sent by a host
in one VLAN to a host in another VLAN must traverse through
a router. However, unlike subnets, that share the same spanning
tree, each VLAN may have its own independent spanning tree
[14] and a union of these trees does not necessarily yield a tree
structure. Consequently, our scheme can calculate the skeleton-
tree of each VLAN, without the ability to merge them. However,
as mentioned above, the calculated skeleton-trees are frequently
comprised only of anchor nodes. Thus, the network topology
can be obtained from the union of the calculated skeleton-trees.

IX. CONCLUSION

This study addresses the challenge of inferring the topology
of large multi-subnet Ethernet LANs. Since, the network topol-
ogy cannot easily be obtained from the MIB information of the
elements, it can be considered as the network secret. To this end,
we presented a simple and efficient topology discovery scheme
that utilizes a novel data structure, termed a skeleton-tree. The
scheme infers the topology of each individual subnet with a cer-
tain degree of accuracy and performs a sequence of merge op-
erations to discover the complete network topology. In other
words, the scheme uses skeleton trees to reveal the network se-
cret hidden in the switch closets. Figuratively, it can be viewed
as Taking the skeletons out of the closets.

X. ACKNOWLEDGEMENT

Special thanks for Yuri Breitbart for presenting this topology
discovery problem to me and for many useful discussions. I also
thank Seung-Jae Han, Perinkulam S. Narayan, Mark Smith and
the Infocom reviewers for their useful comments.

REFERENCES

[1] W. Stallings, “SNMP, SNMPv2, SNMPv3, and RMON 1 and 2”, Addison-
Wesley Longman, Inc., 1999, (3rd Edition).

[2] A. Bierman and K. Jones, “Physical Topology MIB,” Internet RFC-2922
(www.ietf.org/rfc/), Sept. 2000.

[3] B. Boardman, “Layer 2 Layout: Layer 2 Discovery Digs Deep”, Network
and System Management Workshop Nov. 2003.

[4] R. Caceres, N.G. Duffield, J. Horowitz, D. Towsley and T. Bu, “Multicast-
Based Inference of Network-Internal Characteristics: Accuracy of Packet
Loss Estimation”, in Proc. of IEEE INFOCOM’99, Mar. 1999.

[5] T. Bu, N. Duffield, F. Lo Presti and D. Towsley, “Network Tomography on
General Topology”, in Proc. of ACM SIGMETRICS’2002, June 2002.

[6] M. Rabbat, R. Nowak and M. Coates, “Multiple Source, Multiple Destina-
tion Network Tomography”, in Proc. of IEEE INFOCOM’2004, Mar., 2004.

[7] R. Black, A. Donnelly and C. Fournet, “Ethernet Topology Discovery with-
out Network Assistance”, in Proc. of IEEE ICNP’2004, Oct., 2004.

[8] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri, and A. Sil-
berschatz, “Topology Discovery in Heterogeneous IP Networks,” in Proc. of
IEEE INFOCOM’2000, Mar. 2000. Also appear in IEEE/ACM Transactions
on Networking, Vol. 12, No 3, June 2004, pp. 401-414.

[9] B. Lowekamp, D.R. O’Hallaron, and T.R. Gross, “Topology Discovery for
Large Ethernet Networks,” in Proc. of ACM SIGCOMM, Aug. 2001.

[10] Y. Bejerano, Y. Breitbart, M. Garofalakis, and R. Rastogi, “Physical Topol-
ogy Discovery for Large Multi-Subnet Networks,” in Proc. of IEEE INFO-
COM’2000, Mar. 2003.

[11] J. Gross and J. Yellon, “Graph Theory and Its Applications,” CRC Press,
1999.

[12] R. Perlman “Interconnections: Bridges, Routers, Switches, and Internet-
working Protocols,” Addison-Wesley, 1999.

[13] W. R. Stevens, “TCP/IP Illustrated, Volume 1, The Protocols,” Addison-
Wesley, 1994.

[14] “802.1Q, IEEE Standards for Local and metropolitan area networks Vir-
tual Bridged Local Area Networks,” IEEE, 2003 Edition.

[15] Y. Bejerano, “Taking The Skeletons Out Of the Closets: A Simple And
Efficient Topology Discovery Scheme for Large Multi-subnet LANs”, ITD-
05-46100J, Lucent Technologies, March 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

	Select a link below
	Return to Main Menu
	Return to Previous View

